My name is “Coffey”, and I'm very interested in working out the origins of my family. My ideas have evolved over time, as DNA evidence came to light. Following is my current opinion, followed by my analysis. I invite comments and arguments:

I believe our “Coffey” ancestral line traces back hundreds of years to County Wexford, Ireland, where the MRCA (Most Recent Common Ancestor) of our large, extended family lived. But the MRCA's surname wasn't “Coffey”, it was more likely something similar to “Keogh”. Wikipedia will tell you that Keogh is a reduced form of the Gaelic “MacEochaidh”. Wexford is considered an ancient homeland of the Keogh (MacEochaidh) clan.

At some unknown point in time, more than 300 years ago, our particular branch became known as “Coffey”. There are several ways this could have happened: (1) Perhaps an ancestor moved to an area where there was an ancient O'Cobhthaigh (Coffey) clan, and the Coffey/Keogh name similarity was such that our ancestor's name evolved to Coffey. (2) Perhaps there was an adoption of a Keogh into a Coffey family. Or (3) perhaps there was an infidelity involving a Keogh ancestor and a Coffey female. Either way, this line ultimately led to Edward Coffey, who came to America as an indentured servant. And to Edward's cousin Peter Coffee, who came to America on a prison ship after getting in trouble with British law.

Now let us go back to Wexford. There was another similar, but clearly separate, incident where another “Keogh” evolved into a “Coffey”. This one led down to a Patrick Coffey, who lived in Ballyhale, County Kilkenny, and who came to America in 1863 and settled in New Jersey.

(Note that we first discovered Patrick's descendants via a DNA test done with a different testing service. This involved fewer tested markers, and with this limited info it appeared Patrick might be quite close to Edward and Peter. And we thought that “Hey, our Edward and Peter must have ALSO come from Kilkenny!” But we have now acquired a new 111-marker test on Patrick's line. While Patrick is still clearly related to Edward/Peter, the connection has to be farther back in time. Patrick is closer to the Keogh's who remained in Wexford. So we really no longer have solid evidence that Edward and Peter were from Kilkenny.)

Also it is not clear whose line first started using the “Coffey” name, or when that happened.

Finally, the Keogh's from Wexford also continued to proliferate. Some of their modern descendants remained in Ireland, but many also immigrated to America. They were using the modern names like Keogh, Keough, Kehoe, Kaho, and Keay. And many of them...
did DNA testing, which proved we are all related. I started out calling us the “Coffey/Coffee/Keogh/Kehoe/Kaho” family, but the list of names keeps growing. So now I will call us the “Coffey/Keogh” family, and ask to reader to recognize that “Keogh” represents a variety of similar names! (Our extended family also includes a Quinn, who will be discussed shortly.)

**THE EVIDENCE:**
Now let me lead the reader through the evidence that led me to the above. Some of it gets complicated, so be patient and read carefully!

Here’s a list of the players, using short handles to facilitate future discussion:

*Edward Coffey* refers to the immigrant Edward Coffey, who arrived in America before 1699. We have more than 50 descendants of Edward with DNA tests. One of those is *Luther Coffey*, whom we can show has DNA matching the immigrant Edward. Another is *Fred Coffey* (that’s me!) who matches Luther on 66 out of 67 markers, but who also has a 111-marker test, which is useful for some purposes. (In any reference to 111-marker tests on the Edward line, it’s actually based on Fred’s sample.)

*Peter Coffee* is another immigrant that arrived in the early 1700’s. Only a few of his descendants have been tested, but that DNA proves he was related to Edward. The tested person of interest is *Carol Coffee*.

*Patrick Coffey* is a more recent immigrant, who arrived in America in 1863 and settled in New Jersey. The tested person was *Don Coffey*, or Donald Lee Coffey. The DNA says he is related to Edward and Peter, and we learned he came from Ballyhale, County Kilkenny, Ireland.

*Ray M Keogh* (Raymond Michael Keogh), lives in Ireland, and has been tested more extensively than any others of the “Keogh” clan. The homeland of this clan is believed to be County Wexford (which is near Kilkenny). Other tested members of the Keogh clan are *Steven Keogh* (Steven Keogh), *Griffin Kaho* (Griffin Kaho), *Travis Keough* (Travis Keough), and *Pat Kehoe* (Pat Kehoe). Also *Dan Keough* (Daniel James Kehoe) and *James Kehoe* (James Kehoe), whose ancestors arrived separately in the mid-1800’s and settled in Brown County, WI – some believe their immigrant ancestors may have been cousins. They have an excellent 111-marker match.

*Robert Keay* (Robert Keay (pronounced “K”)) only knows his genealogy as far back as his grandfather.

*Pat Quinn* (R Patrick Quinn): Early DNA comparisons proved, to the surprise of his family, that his DNA ancestry was NOT Quinn! It now seems that his father, Peter Quinn, was the offspring from a non-paternal event involving either a Coffey or a Keogh. Further investigations showed there was a “Keough” living in the same building as the Quinn family. They have now traced Pat Quinn’s ancestry to Patrick KEOUGH who was born 25 May 1806 in Newbridge, County Kildare.

*J Kehoe* and *D Kehoe* are two men who were tested on a different service, ancestry.com, which no longer does y-DNA testing. There are, unfortunately, gaps in
the list of tested markers. This makes comparisons difficult, and I have left these men out of this current analysis. But they are definitely our “cousins”!

Finally, we have Walker J Kehoe that show up as matching some of the above. He is definitely related to us. However I can’t see his DNA details, because he has joined neither the Coffey Surname Project nor the Keogh Surname Project. (I sent him a message suggesting that he join us, got no response.)

Next, I would like to introduce a chart that shows the sequence by which the above might have descended from the original MRCA:

![Chart showing DNA sequence and probable descent from MRCA](chart.png)

I will elaborate more on how this chart was developed later. However the lines show the probable descent from the MRCA. And the labels on the lines indicate which DNA marker
changes identified the paths of descent. For example, the first split divides the family into two groups, based on Marker 21. The “M21 = 29” indicates that Marker #21 has 29 STR’s (Short Tandem Repeats), versus “M21=30” for the second group. We don’t know which applied to the original MRCA.

For the later branches, we DO know, with good confidence, what the MRCA’s original y-DNA looked like. Thus the label “M49:23>22” indicates that for Marker #49, the 23 STR’s of the MRCA mutated to 22 STR’s for that particular branch. HOW we know this will be discussed later. Also those wanting more discussion should look at our DNA web page, and read the section on “Background Discussions”. See:

www.coffey.ws/FamilyTree/DNA

In the above figure, the last line before the name box generally indicates changes that only occurred in that one individual’s line. However a few of the mutations are marked with a blue font. That indicates a change that, per this chart, ALSO simultaneously occurred in at least one of the other lines. That is possible, and does happen, but raises some concerns if there might be a better way to construct this tree. More discussion later.

For the moment, just let me draw your attention to the line in this chart that ends with “PatrickCoffey, Immigrant”. This shows that Patrick is on a quite DIFFERENT line from Edward and Peter, and that he is closer to the “Keogh” group. This leads me to conclude that Edward and Peter were NOT his relatively close relatives, and Patrick’s origin in Ballyhale, Kilkenny, is NOT really evidence that Edward and Peter also came from there.

Also note the line that ends with PatQuinn. As noted earlier, he is almost certainly really a “Keough”. But notice the “blue” labels on the mutations leading to his box: On marker 13 he matches StevenKeogh, JamesKehoe and TravisKeough; on marker 35 he matches PatKehoe; and on Marker 60 he matches TravisKeough. That could happen if the individual markers mutated separately in each line. However I would be more comfortable if I could redraw the tree to make at least some of those single mutations in a common ancestor. I haven’t figured out how to do so.

ABOUT MRCAs:
Note the above “MRCA” is meant to be the ancestor of EVERYBODY in this extended family. However in much of the following, “MRCA” may apply to smaller sub-groups. The MRCA of Edward and Peter will certainly be some closer ancestor than the “GRAND MRCA”!

THE MRCA OF EDWARD AND PETER:
I now want to try to begin to establish a time line for when the separation of their two family lines occurred, and I will first look at what DNA tells us about Edward and Peter, if they stood alone. However keep in mind I postulate a name change from Keogh to Coffey, and their DNA offers no clue about that. All I am sure about is that it must have
happened in a common ancestor before Edward or Peter were born, and their MRCA’s name could have been either Coffey, or Keogh.

Do we have information on when their MRCA might have lived? Yes we do, but our perception has changed as new information develops. I want to lead you through the following exercise, exploring the development of our understanding:

Consider two of the tested individuals: We have Luther Coffey who descends from Edward, and we have Carol Coffee who descends from Peter. Both of these individuals have 67-marker tests (and more), and they differ from each other at only two markers – a "genetic distance" of two. There is no doubt that they are related.

Can our testing service, Family Tree DNA, tell us anything about the time to their MRCA? Yes, they have a calculation tool that uses the probabilities of changes in individual markers to estimate how much time must have elapsed. They call it "Family Tree DNA Time Predictor", or "FTDNATiP".

So we can ask FTDNATiP to look at the 67-marker match for Luther and Carol. And it comes back with information like "There is a 5% chance they have the same father, and you can be 60% confident that the MRCA is within the last 5 generations."

Now, Luther and Carol were very good genealogists, and they would say "That is pure nonsense. We KNOW we don't have the same father, and we KNOW we're not related within 5 generations."

In fact they have each carefully researched their genealogy back 8 generations, and they KNOW there's no common ancestor there. The "most recent" possibility for a common ancestor is Edward's father, who could just possibly also be the father or grandfather of Peter. But they don’t know his name or anything about him. And it could of course be someone much farther back that that!

For shorthand, we'll call this most recent possible common ancestor, in the ninth generation, "FOE". That stands for "Father of Edward" (and doesn't "Foe Coffey" sound like a good 17th century Irish name?)

FTDNATiP understands this issue, and it offers the option for you to instruct it "There's no possibility of a common ancestor within 8 generations". And it will happily re-calculate.

This time it comes back and says "OK, there is no chance of a MRCA in the last 8 generations. In that case, there is a 31% chance the MRCA is FOE (i.e. the 9th generation). And there's about an 80% chance that MRCA is in the 4 generations including FOE."

But now it's MY turn to say "This is nonsense!" That's because I know that FTDNATiP did its calculations assuming that the two mutations that make Luther and Carol different could have occurred in ANY of the last eight to twelve generations, and also
assumes the mutations could have been on EITHER of their lines. And I know better than that!

How do I know that? Let me take one line at a time:

For Luther's line leading back to Edward, be aware that Luther was NOT our only test subject. We have actually now tested more than 50 men whose ancestry leads back to Edward, and a number of those have 37-marker and 67-marker tests. Now, there are indeed a lot of differences (i.e. mutations) in the DNA profiles of those 50 men. That's to be expected if you’re talking 67 markers, 50 genealogies, over 8 generations.

But if you study the data carefully you quickly conclude that Luther's particular ancestral line is one that has NOT seen ANY mutations at all. Luther (and several other men) actually has the original Edward DNA, from which all others are derived. (Just try to postulate any OTHER starting point from Edward, and try to work out a sequence of mutations that would yield the actual results for the 50 men. It's impossible.)

So, if I could take my time machine back to year 1700 and take a sample from Edward (assuming of course he didn't shoot me for trying to practice witchcraft), that sample would yield identical results to Luther. There have been NO mutations in Luther's DNA line.

Now consider Carol's line: Here I'm not quite so absolutely confident, but we have now tested TWO men who descend via entirely different lines from Peter’s son William (born about 1740). And those two men have absolutely identical profiles. In other words, they both differ from Luther in the SAME two specific markers.

Are the differences due to changes since the time of William, or did William already have the "two marker" difference? If the former, then there must have been two SEPARATE and IDENTICAL mutations of TWO specific markers, on each of the two descendant lines. The odds against that are VERY high. It's not impossible, but the odds strongly favor SINGLE mutations, if such an explanation can be found.

It is MUCH more likely that those mutations had occurred BEFORE the time of William, or in William himself. That only requires that they happen once – such single random changes are not unexpected. Thus it is VERY likely that ancestor William already had exactly the same DNA profile as does his living GGGG Grandson Carol.

(We do have a third descendant of William by a third, different line – but I haven't persuaded that person to upgrade from his 12-marker test. If he did so, and it matched, then I would KNOW I had William's DNA pinned down!)

So lets jump into our time machine again, and go back to Virginia, to the year 1750. We find William (he's about 10 years old) and get a DNA sample. And then we also find Luther’s GGGG Grandfather John, son of Edward. John is about age 36. And we get a sample of John's DNA too.
Then we "return to the future", and submit our two samples to FTDNA. And, as we would expect, they come back identical to the results for Carol and Luther.

So we can turn to FTDNATip again, but tell it that THESE two samples have only TWO generations in which there cannot be a common ancestor. The results come back, and we correct for the six generations we skipped. This time FTDNATip says there is only a 12% chance the MRCA is "FOE Coffey". But there's still a 58% chance that the MRCA is within the 4 generations including FOE.

To summarize, here's a graph of what we have just done:

To review: When we just told FTDNATip to simply analyze the sample results, it jumped to the "unadjusted" conclusion that there could be a very early MRCA. We then told it there couldn't be one in the first 8 generations, and it shifted our curve down and to the right. When we also told it there was evidence of no mutations in the last 6 generations, it shifted the curve further down.

I believe the far right curve above is the best current representation of how many generations we have to look back in order to find the MRCA for all the descendants of Edward and Peter.
LOOKING AT 111-MARKERS, FOR SELECTED PEOPLE:
I said the above exercise was based on looking at 67-markers. However Fred Coffey (Edward Coffey line) and Carol (Peter Coffee line) now have 111-marker tests. But I can’t reproduce the above exercise, because we don’t have enough other people tested at 111-markers to rule out certain options.

However we DO now also have one 111-marker test for the Patrick Coffey line and one for Ray M Keogh. Further, we already know per above that Edward Coffey cannot share a MRCA with Peter Coffee before 8 generations, and the same is true for Edward Coffey versus Patrick Coffey or versus Ray M Keogh. That’s because Edward was in America for those 8 generations, while the others were still in Ireland. However in comparing Patrick Coffey and Ray M Keogh, they were both in Ireland and in theory could have had a MRCA after maybe 3 generations.

Subject to these constraints, we have the following table:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>6</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>12%</td>
</tr>
<tr>
<td>9</td>
<td>33%</td>
<td>10%</td>
<td>10%</td>
<td>42%</td>
</tr>
<tr>
<td>12</td>
<td>71%</td>
<td>37%</td>
<td>36%</td>
<td>72%</td>
</tr>
<tr>
<td>15</td>
<td>90%</td>
<td>64%</td>
<td>64%</td>
<td>89%</td>
</tr>
<tr>
<td>18</td>
<td>97%</td>
<td>83%</td>
<td>83%</td>
<td>97%</td>
</tr>
<tr>
<td>21</td>
<td>99%</td>
<td>93%</td>
<td>93%</td>
<td>99%</td>
</tr>
<tr>
<td>24</td>
<td>100%</td>
<td>98%</td>
<td>98%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Look at the line for 12 generations: FTDNATip says it is 71% likely that Edward and Peter’s MRCA is found. That is within about the 4 generations before they left for America. And it shows a 72% chance that Patrick and Ray’s MRCA is found. But the chance that Edward and Patrick’s MRCA is found in that time period is less than half as much.

But these are just PROBABILITIES, and every combination does have some probability. However by about 21 to 24 generations, there is virtually no remaining doubt. They are ALL part of the same family!
PATQUINN FAMILY LINE:

PatQuinn (R Patrick Quinn) is a very interesting participant, for a number of reasons. Following is a similar table to the preceding, which allows me to explain why:

### PROBABILITY OF MRCA VERSUS NUMBER OF GENERATIONS FOR R PATRICK QUINN

<table>
<thead>
<tr>
<th># Mkr</th>
<th>67 vs. Edward Coffey</th>
<th>67 vs. Patrick Coffey</th>
<th>37 vs. Walker Kehoe</th>
<th>67 vs. Steven Keogh</th>
<th>67 vs. Pat Kehoe</th>
<th>67 vs. James Kehoe</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>6</td>
<td>6%</td>
<td>0%</td>
<td>12%</td>
<td>11%</td>
<td>6%</td>
<td>0%</td>
</tr>
<tr>
<td>9</td>
<td>23%</td>
<td>2%</td>
<td>34%</td>
<td>32%</td>
<td>24%</td>
<td>2%</td>
</tr>
<tr>
<td>12</td>
<td>48%</td>
<td>10%</td>
<td>57%</td>
<td>55%</td>
<td>49%</td>
<td>10%</td>
</tr>
<tr>
<td>15</td>
<td>70%</td>
<td>25%</td>
<td>76%</td>
<td>73%</td>
<td>71%</td>
<td>24%</td>
</tr>
<tr>
<td>18</td>
<td>85%</td>
<td>45%</td>
<td>87%</td>
<td>86%</td>
<td>85%</td>
<td>43%</td>
</tr>
<tr>
<td>21</td>
<td>93%</td>
<td>63%</td>
<td>94%</td>
<td>93%</td>
<td>93%</td>
<td>62%</td>
</tr>
<tr>
<td>24</td>
<td>97%</td>
<td>78%</td>
<td>97%</td>
<td>96%</td>
<td>97%</td>
<td>77%</td>
</tr>
</tbody>
</table>

The above table assumes that Patrick cannot have a MRCA with any of our other tested people within 3 generations, because his line has been isolated in America for about that long. And, as noted earlier, we are quite convinced that Patrick is actually descended on his male line from a “Keough”, and that he therefore belongs to what we are calling the “Keo...” Group. But the interesting thing is the DIVERSITY of his matches, per FTDNATiP!

The first two columns above compare his probability of MRCA with two Coffey’s, i.e. with the immigrant Edward Coffey and with the later immigrant Patrick Coffey. Look at the line for 15 generations: This suggests a 70% chance that his MRCA with Edward is within 15 generations, but only a 25% chance of a MRCA with Patrick within the same time period. On the surface this is a bit of a surprise, because we previously concluded Patrick was more like the Keogh’s!

And we can also compare him with four Kehoe/Keogh men, listed in order from closest match to most distant match. They are Walker Kehoe, Steven Keogh, Pat Kehoe, and James Kehoe. And the probability of MRCA within 15 generations declines from 76% down to 24%. So now Patrick’s Keogh connections look just as uncertain as his Coffey connections!

Actually, the range is worse than this: At 25 markers, Patrick has two more Keogh matches, to Robert Keay and to Walker J Kehoe. But when we try to examine them at
37- marker levels, FTDNA won’t even allow me to do the calculation because they seem “too distant”!

This is all consistent with County Wexford being a very ancient homeland of the Keogh Clan. All of these people do have a common MRCA, but the Clan has been around for a very long time, and our members’ DNA has had time to evolve into many different paths. And the Coffeys are clearly part of this Clan.

**THE STORY FROM EXAMINING THE INDIVIDUAL DNA MARKERS:**
The “Coffey DNA Project” presently has more than 200 members. These people belong to several unrelated Coffey groups, but more than 50 are descendants of the Coffey/Keogh family under discussion. And they are tested to various levels, up to 111-markers. Full detail on the data can be found at:


Within this Coffey/Keogh family, most of the tested markers show identical values for all of the tested men. The following table shows ONLY those markers that have DIFFERENCES. Markers that were not tested for an individual are indicated with a “-“:

```
<table>
<thead>
<tr>
<th>Marker #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>TESTED ON ANCESTRY.COM. NOT USED FOR ANALYSIS:</td>
<td></td>
</tr>
</tbody>
</table>

**GOOD MATCHES, BUT NO ACCESS TO DATA:**
Steven Keogh  For PatrickCoffey: GD=3@37. For PatQuinn: GD=4@37. For Edward: GD=3@37.
(There is enough info to determine the StephenKeogh profile per above.)
Walker J Kehoe 37 Marker Test. GD=4 for PatQuinn,

In this table, the markers that are DIFFERENT versus the majority are shaded in pink.
At the top, each column is identified by a “DYS” number, and by a marker number. The DYS numbers are the official designation, but the marker numbers are easier references. Note that many of the marker names have red labels at the top – these are the ones that are more likely to mutate, and most of the changes in the table are indeed in these columns. Some of the DYS numbers show markers in groups of 2, 3 or 4 – just look for any number within the group that has changed.

First, note that in most of the cases, each “difference” only occurs in ONE of the tested men. This very strongly suggests that in each such case, that represents a mutation that only occurred in that ONE line, AFTER the various lines had separated. Therefore each of these does not reflect any change in any shared ancestor. Given that, we should be convinced that the MRCA of the group, in each of these cases, must have had the most common allele value. The yellow band labeled “MRCA” shows my assessment of the value the shared GRAND MRCA must have had.

In the end, there were only a few markers that reflected a difference in more than one of the lines. And while it is possible that these could reflect entirely separate mutations in each line, the probabilities strongly favor that the mutations occurred only one time in a shared ancestor.

The markers that seem to clearly tie groups together, and imply a shared ancestor, are shown in red-border boxes. Consider Marker #21, where one group of people have a value of “29”, and another group has “30”. While it’s possible that this difference arose via many SEPARATE mutations in these lines, this has an extremely low probability. Where possible, it is always more probable that it reflects a SINGLE mutation in a common ancestor. It thus quite probably marked the time that one of the sons of our GRAND MRCA had a single mutation. There’s no way of knowing if the MRCA himself had an allele value of “29”, which mutated in that one son to a “30”, or vice versa.

The tree chart at the beginning of this paper was an attempt to construct a defensible sequence of how the mutations might have occurred.

Looking at the above, it is striking that the Edward and Peter lines indicate very minimal differences versus the “MRCA” line. But do not be tempted to think this in any way implies that the MRCA was a “Coffey”. In part this is because we had already backed out all of the mutations that occurred in various lines in the 300 years since E & P arrived in America, selecting representative individuals who matched the immigrants’ DNA. We didn’t have enough samples to do this for any of the Kehoe Group. Also in part it is pure coincidence. Everybody was named “Keogh” in ancient times, and Edward and Peter’s lines just happened by coincidence to experience fewer mutations.

WHEN did all these various mutations happen? We don’t really know, but we can put boundaries on it. We KNOW that our Edward and Peter lines were separate from the Kehoe group by 300 years ago, because Edward and Peter had arrived in America by then. And there are SO MANY differences in the various Keogh lines, that we can be
pretty sure that the FIRST of their mutations actually occurred much more than 300 years ago.

At the other extreme, observe the probabilities associated with the earlier table developed for PatQuinn using FTDNATiP, who has one of the more extreme differences versus others. It shows that even after 24 generations the probabilities have not yet reached near certainty. At about 25 years per generation, these 24 generations would approach about 600 years. But the numbers are converging fast enough to suggest a 90% plus probability that we all began to split NOT MORE than 700 years ago.

So a mid-point guess might be that our shared “GRAND MRCA” lived about 500 years ago?

**COFFEY ORIGINS: Deep Roots**

There is another type of y-chromosome DNA study, which groups people into “haplogroups”, indicating a common ancient genetic origin. These studies show that humans evolved over time into a number of groups, all starting from a “y-chromosome Adam” that lived about 60,000 years ago in Africa.

About 25,000 years ago a branch called “R1b” had separated, and that became the most common population group in Europe. Additional splits from R1b have been documented to date, and more continue to be defined. Both the Coffey and the Keogh lines have done such testing, and since they are clearly one family, they clearly have the same haplogroup. At the present level of test depth, Coffey/Keogh are members of a group called “R-L176”, for the final tested SNP.)

Archaeologists know that Ireland was settled in several waves during the last 2000 to 4000 years. This test suggests OUR wave may have come through Iberia or Southwest France. Future tests may confirm or refine this.

The results represent an intriguing possibility...according to ancient Irish legends, one of the founding peoples of Ireland were the Milesians, who were in Iberia prior to arriving in Ireland. What if there is some truth to this ancient legend and a small percentage of modern Irish people still preserve this ancient lineage, including our Coffey/Keogh family?

This type of testing is an area now under active investigation, and the FTDNA testing service is now offering a SNP test called “The Big Y”. They describe it as follows:

“The Big Y product is a Y-chromosome direct paternal lineage test. We have designed it to explore deep ancestral links on our common paternal tree. Big Y tests thousands of known branch markers as well as millions of places where there may be new branch markers. It is intended for expert users with an interest in advancing science.”

I (Fred) don’t qualify as “expert”. However cousin Tim Peterman has taken a keen interest in this sort of testing, and has applied it to several branches of his family tree.
And he recruited his mother’s second cousin, Billy W Coffey, to do this Big-Y test. Billy’s results should also be generally applicable to ALL the Coffey/Keogh descendants. Tim has published a paper on the topic, which you can read at:

http://www.coffey.ws/familytree/dna/BigYbyTimPeterman.pdf

An additional three Big-Y tests have now been completed, but the analysis is not yet complete. See the Figure on Page 3, where the tested men are flagged.